第四章 機率基礎概念

授課教師: 橫清全 國立暨南國際大學經濟學系

第4.4節 連續隨機變數

X為 r.v.,其累積分配函數 F_X 定義為: $\forall x \in \Re$, $F_X(x) = P(X \le x)$

若 F_X 為連續函數(Continuous function),且除了有限多點以外 F_X 可微,則稱 X 為連續隨機變數(Continuous r.v.)。

Note: 若 X 為連續隨機變數,則 $P({X = x}) = 0$

$$P(\lbrace y < X \le x \rbrace) = P(X \le x) - P(X \le y)$$
$$= F_X(x) - F_X(y)$$

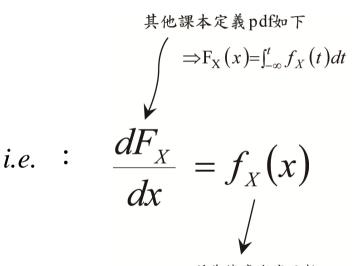
$$\lim_{y \to x} P(\{y < X \le x\}) = \lim_{y \to x} [F_X(x) - F_X(y)]$$
(: F_X 為連續)
$$= F_X(x) - \lim_{y \to x} F_X(y)$$

$$= F_Y(x) - F_Y(x) = 0$$

$$\therefore F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

上式等號成立,必須 Y 為連續 r.v.

其中 f_X 是 F_X 的導函數



稱為機率密度函數 (probability density function)

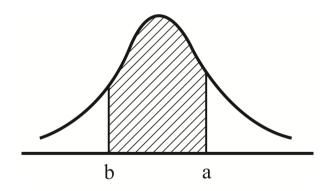
: pdf 積分即為 cdf, cdf 微分即為 pdf

計算各種事件的機率可將 pdf 將在某區域積分即可。

$$\mathbf{Ex} \ P(b \le X \le a) = P(b < X \le a) = P(X \le a) - P(X \le b)$$

$$= F_X(a) - F_X(b) = \int_{-\infty}^a f_X(t) dt - \int_{-\infty}^b f_X(t) dt$$

$$= \int_a^b f_X(t) dt$$



i.e. pdf 在 [b,a] 範圍內所形成的面積。

機率密度函數的性質:

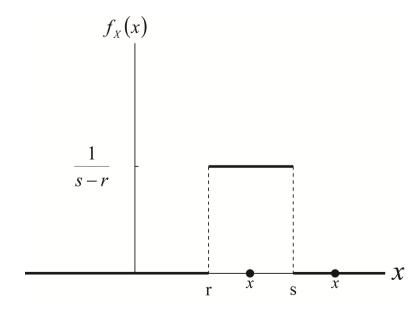
1.
$$f_x(x) \ge 0 \quad \forall x \in \Re$$

$$2. \quad \int_{-\infty}^{\infty} f_X(x) dx = 1$$

\mathbf{Ex} 4.12 從區間 [r,s] 抽取一點所形成之 r.v. X ,其 pdf 為

$$f_X(x) = \begin{cases} \frac{1}{s-r} & r \le x \le s \\ 0 & o.w. \end{cases}$$
i.e.
$$X \sim U(r,s)$$

其 cdf 為?



The *cdf* of *X* is: $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt \quad \forall x \in \Re$.

$$if \quad x \le r \quad \Rightarrow F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^x 0(t)dt = 0$$

$$if \quad r < x \le s \quad \Rightarrow F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^r 0dt + \int_r^x \frac{1}{s-r}dt$$

$$= \frac{1}{s-r}(x-r)$$

$$if \quad x > s \quad \Rightarrow F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^r 0dt + \int_r^s \frac{1}{s-r}dt + \int_s^x 0dt$$

$$= \frac{1}{s-r}(s-r) = 1$$

$$F_{X}(x) = \begin{cases} 0 & \text{if } x \leq r \\ \frac{x-r}{s-r} & \text{if } r < x \leq s \\ 1 & \text{if } x > s \end{cases}$$