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3.1 Introduction
• Gate-level minimization: a digital circuit design task of finding an optimal gate-

level implementation of the Boolean functions.
Thi t k i ll d t d b t i diffi lt t t b l d i th d• This task is well understood, but is difficult to execute by manual design methods 
when the logic has more than a few inputs (typically five inputs).

• Fortunately, computer-based logic synthesis tools can minimize a large set of y, p g y g
Boolean equations efficiently and quickly. 

• Nevertheless, it is important that a designer understands the underlying 
mathematical description and solution of the problemmathematical description and solution of the problem. 

• This chapter will enable you to execute a manual design of simple circuits, 
preparing you for skilled use of modern design tools. 

• Hardware description language (HDL), such as Verilog and VHDL, is used by 
modern design tools.
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3.2 The Map Method
• When implementing a Boolean function: the complexity of the digital logic gates 

is directly related to the complexity of its algebraic expression.
T th t bl t ti i i b t i l t l b i i• Truth table representation is unique, but many equivalent algebraic expressions 
may exist.

• Karnaugh map (K-map): a simple and straightforward procedure for minimizing g p ( p) p g p g
Boolean functions, which may be regarded as a pictorial form of a truth table. 

• K-map is a diagram made up of squares, and each square represents one minterm.
l f i• Boolean function

– can be expressed as a sum of minterms
has simplified expression in sum of products (or product of sums)– has simplified expression in sum of products (or product of sums)

– exists the simplest algebraic expression with a minimum number of terms and 
with the smallest possible number of literals in each term, which will produce 
a circuit with a minimum number of gates and the minimum number of inputs 
to each gate

– may not have unique simplified expression
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Two-Variable Map
• Two-variable map has four squares for four minterms.

• Representation of functions in the map m1 + m2 + m3 = x’y + xy’ + xy = x + y
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Three-Variable map
• Three variables function has eight minterms.
• Arranged in Gray code sequence
• Any two adjacent squares in the map differ by only one variable

– primed in one square and unprimed in the other
e g and can be simplified– e.g. m5 and m7 can be simplified

– m5+ m7 = xy'z + xyz = xz (y'+y) = xz i.e. x = 1 and z = 1.
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Example 3.1
Simplify the Boolean function F(x,y,z) = (2,3,4,5)
F = m2+m3+m4+m5 = x’yz’ + x’yz + xy’z’ + xy’z = x’y + xy’
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– m0 and m2 (m4 and m6) are adjacent
– m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'
– m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'
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Example 3-2
Simplify the Boolean function F(x,y,z) = (3,4,6,7) = yz+ xz'
F = m3+m4+m6+m7 = x’yz + xy’z’ + xyz’ + xyz = xz’ + yz
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Four Adjacent Minterms
– Four adjacent minterms result in one literal expression.
– 2, 4, 8 and 16 squares are adjacent. (How many four adjacent squares? Ans: 6)
– m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz’ = x'z'(y'+y) +xz'(y'+y)

= x'z' + xz’ = z’
– m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz = x'z(y'+y) + xz(y'+y)m1+m3+m5+m7 x y z+x yz+xy z+xyz  x z(y +y) + xz(y +y)

= x'z + xz = z
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Example 3-3
Simplify the Boolean function F(x,y,z) = (0,2,4,5,6)
F = z'+ xy'
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Example 3.4
For the Boolean function F = A'C + A'B + AB'C + BC
(a) Express this function as a sum of minterms. one-literal  4 squares

li l 2(b) Find the minimal sum-of-products expression. two-literal  2 squares
three-literal  1 square

F(A, B, C) = (1, 2, 3, 5, 7) = C + A’B

A’C m1+m3

A’B m2+m32 3

AB’C m5

BC m3+m7

m1+m3+ m5+m7 C
 A’Bm2+m3  A’B
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3-3 Four-Variable Map
• Four variables (w,x,y,z) function has 16 minterms and squares
• Combinations of 2, 4, 8, and 16 adjacent squares
• 1 square  4-literal,  2 squares  3-literal, 

4 squares  2-literal, 8 squares  1-literal
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Example 3-5
Simplify the Boolean function F(w,x,y,z) = (0,1,2,4,5,6,8,9,12,13,14)
F = y’ + w’z’ + xz’
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Example 3-6
Simplify the Boolean function F = ABC + BCD + ABCD + ABC

m0+m1 m2+m10 m8+m9m6F = B’D’ + B’C’ + A’CD’
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Prime Implicants
• Choosing adjacent squares in K-map, we must ensure that

(1) all the minterms of the function are covered, 
(2) the number of terms in the expression is minimized, and 
(3) there are no redundant terms. 
To de elop a s stematic proced re for combining sq ares in the map t o special• To develop a systematic procedure for combining squares in the map, two special 
types of terms are interested. 

• Prime implicant: a product term obtained by combining the maximum possible 
number of adjacent squares in the map. 

• If a minterm in a square is covered by only one prime implicant, that prime 
implicant is said to be essentialimplicant is said to be essential.

• The prime implicants can be obtained by combining all possible maximum 
numbers of squares.
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• Consider the following four-variable Boolean function: 
F(A B C D) = (0 2 3 5 7 8 9 10 11 13 15)F(A, B, C, D) = (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

• There are four possible expressions with four product terms of two literals each:
F = BD + B’D’ + CD + AD

= BD + B’D’ + CD + AB’
= BD + B’D’ + B’C + AD
= BD + B’D’ + B’C + AB’ m3, m9, and m11 BD + B D  + B C + AB 3, 9, 11

1

1 1
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Five-Variable Map
• Map for more than four variables becomes complicated

– five-variable map: two four-variable map (one on the top of the other)
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Example of 5-Variable Map 
F = (0,2,4,6,9,13,21,23,25,29,31)
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Another Viewpoint of 5-Variable Map
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3-4 Product of Sums Simplification
• Approach #1

– Simplified F' in the form of sum of products
– Apply DeMorgan's theorem F = (F')' 
– F': sum of products => F: product of sums
Approach #2: d alit• Approach #2: duality
– combinations of maxterms (it was minterms)
– M0M1 = (A+B+C+D)(A+B+C+D’) = (A+B+C)+(DD’) = A+B+CM0M1  (A+B+C+D)(A+B+C+D )  (A+B+C)+(DD )  A+B+C

  CD    
AB 00 01 11 10 AB 00 01 11 10

 00 M0 M1 M3 M2 
01 M4 M5 M7 M6 01 M4 M5 M7 M6

 11 M12 M13 M15 M14 
 10 M8 M9 M11 M10
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Example 3-7
Simplify the Boolean function F = (0,1,2,5,8,9,10) into (a) sum-of-products form 
and (b) product-of-sums form.

F' = AB+CD+BD'         (adjacent squares 0 in the map)
Apply DeMorgan's theorem; F = (A'+B')(C'+D')(B'+D)
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Two-Level Implementation of Example 3-7
• Two-level gate implementation: sum of products, and product of sums
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Sum-of-Maxterm
• The 1’s of the function represent the minterms and the 0’s represent the maxterms.
• For Table 3.1

In sum-of-minterm:  F(x, y, z) = (1, 3, 4, 6) = x’z + xz’

In sum-of-maxterm:  F’(x, y, z) = (0, 2, 5, 7) = (x’+z’) (x+z)
Taking the complement of F F(x, y, z) = (x’+z’) (x+z) = x’z + xz’
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3-5 Don't-Care Conditions
• In practice, functions with unspecified outputs for some input combinations are 

called incompletely specified functions. As an example, the BCD code has six 
combinations that are not used and considered to be unspecifiedcombinations that are not used and considered to be unspecified. 

• The unspecified minterms of a function is called don’t-care conditions, because
we simply don’t care what value is assumed to the unspecified minterms. 

• These don’t-care conditions with symbol ‘X’ can be used on a map to provide 
further simplification of the Boolean expression.

• In choosing adjacent squares to simplify the function the don’t care minterms• In choosing adjacent squares to simplify the function, the don t-care minterms
may be assumed to be either 0 or 1.
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Example 3.8
Simplify the Boolean function F(w, x, y, z) = (1, 3, 7, 11, 15) which has the don’t-
care conditions d(w, x, y, z) = (0, 2, 5).
With t i X F + ’ ’Without using X, F = yz + w’x’z
Using X, (a) F = yz + w’x’    (b) F = yz + w’z
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3-6 NAND and NOR Implementation
• NAND or NOR are preferred as the basic gates used in IC design. 
• AND, OR, NOT, and other gates are translated to NAND and NOR gates. 
• NAND gate is a universal gate, any function can be implemented with NAND.

• Two graphic symbols for a NAND gate
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Two-level Implementation: NAND-NAND
• The implementation of Boolean functions with NAND gates requires that the 

functions be in sum-of-products form.
T l l l i NAND NAND f d t• Two-level logic: NAND-NAND  sum of products

• Example: F = AB + CD = ((AB)’(CD)’)’
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Example 3-9
• Implement the following Boolean function with NAND gates:  

F(x, y, z) = (1, 2, 3, 4, 5, 7)
• Fill the map and simplify we get F = xy’ + x’y + zFill the map and simplify, we get F  xy  + x y + z
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Two-level Implementation Procedure
• The standard form of expressing Boolean functions results in a two-level 

implementation.
1 Si lif th f ti d it i f d t f1. Simplify the function and express it in sum-of-products form.
2. Draw a NAND gate for each product term of the expression that has at least two 

literals. The inputs to each NAND gate are the literals of the term. This procedure p g p
produces a group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the 
second level with inputs coming from outputs of first level gatessecond level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level. However, if the 
single literal is complemented, it can be connected directly to an input of the 
second level NAND gate.
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Multilevel NAND Circuits
• Boolean function implementation of three or more levels (multi-level)
• Express the Boolean function in terms of AND, OR, and complement operations. 

Th f ti th b i l t d ith AND d OR t Aft th t ifThe function can then be implemented with AND and OR gates. After that, if 
necessary, it can be converted into an all-NAND circuit.

• Example: F = A (CD + B) + BC’p ( )
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Multilevel AND-OR  All-NAND
1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2. Convert all OR gates to NAND gates with invert-OR graphic symbols.
3 Check all the bubbles in the diagram For every bubble that is not compensated3. Check all the bubbles in the diagram. For every bubble that is not compensated 

by another small circle along the same line, insert an inverter (a one-input NAND 
gate) or complement the input literal.

Example: F = (AB’ + A’ B)(C + D’)
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NOR Implementation
• NOR function is the dual of NAND function
• The NOR gate is also universal

• Two graphical symbols
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Two-level Implementation: NOR-NOR
• A two-level implementation with NOR gates requires that the function be 

simplified into product-of-sums form. 
A d t f i i i l t d ith OR AND i it• A product-of-sums expression is implemented with OR–AND circuit.

• NOR-NOR: changing the OR gates to NOR gates with OR-invert graphic 
symbols and the AND gate to a NOR gate with an invert-AND graphic symbol. y g g g p y

• Example: F = (A + B)(C + D)E
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Transform AND-OR to All-NOR
• Convert each OR gate to an OR-invert symbol and each AND gate to an invert-

AND symbol.
E l F (AB’ + A’ B)(C + D’)• Example: F = (AB’ + A’ B)(C + D’)
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3-7 Other Two-level Implementations
• Wired-AND: when two open-collector TTL NAND gates ties together, AND 

function, not a physical gate, is formed.
F (AB)’ (CD)’ (AB + CD)’ (A’ + B’ )(C’ + D’ )• F = (AB)’ (CD)’ = (AB + CD)’ = (A’ + B’ )(C’ + D’ )

• Also called an AND–OR–INVERT (AOI) function.

• Similarly, the NOR outputs of ECL gates can be tied together to perform a wired-
OR function.

• F = (A+B)’+(C+D)’ = [(A+B)(C+D)]’
Also called an OR AND INVERT (OAI) f nction
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Nondegenerate Forms
• There are 16 possible combinations of two-level forms

– Eight of them are degenerate forms = a single operation
– The eight nondegenerate forms are
AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, 

OR-AND AND-OROR AND, AND OR
AND-OR and NAND-NAND = sum of products
OR-AND and NOR-NOR = product of sums
NOR-OR, NAND-AND, OR-AND, AND-OR = ?
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AND-OR-Invert Implementation
• NAND-AND = AND-NOR = AOI
• Example: F = (AB + CD + E)’
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OR-AND-INVERT (OAI) Implementation
• OR-NAND = NOR-OR = OAI
• Example:  F = ((A + B)(C + D)E)'
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Tabular Summary
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Example 3-10
Implement the function of Fig. (a) with the four 2-level forms listed in Table 3.2 .

• F’ = x’y + xy’ + z (F’: sum of products; 0’s)

• F = (x’y + xy’ + z)’ (F: AOI implementation)• F = (x y + xy  + z)  (F: AOI implementation)

• F = x’y’z’ + xyz’ (F: sum of products; 1’s)y y ( p ; )

• F’ = (x + y + z)(x’ + y’ + z) (F’: product of sums)

• F = ((x + y + z)(x’ + y’ + z))’ (F: OAI)
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Other Two-level Implementations
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3-8 Exclusive-OR Function
• Exclusive-OR (XOR)

– xy = xy’ + x’y
• Exclusive-NOR (XNOR) (some uses symbol ʘ)

– (xy)’ = xy + x’y’
Some identities• Some identities
– x0 = x
– x1 = x’x1  x
– xx = 0
– xx’ = 1
– xy’ = (xy)’
– x'y = (xy)’

• Commutative and associative
– AB = BA

(AB)C A(BC) ABC
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XOR Implementation
• (x’ + y’)x + (x’ + y’)y = xy’ + x’y = xy
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Odd Function
ABC (AB’ + A’B)C’ + (AB + A’B’)C AB’C’ + A’BC’ + ABC + A’B’C• ABC = (AB’ + A’B)C’ + (AB + A’B’)C = AB’C’ + A’BC’ + ABC + A’B’C

= (1,2,4,7)
• Odd number of 1'sOdd number of 1 s
• The complement is a even function.
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Four-variable Exclusive-OR
• ABCD = (AB’ + A’B)(CD’ + C’D)

= (AB’ + A’B)(CD + C’D’) + (AB + A’B’)(CD’ + C’D)
= (1, 2, 4, 7, 8, 11, 13, 14)
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Parity Generation
• XOR is used in error detection and correction codes; a parity bit is an extra bit 

included with a binary message to make the number of 1’s either odd or even.
P it bit P   i d f d t ti• Parity bit: P = xyz, is used for error detection
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Parity Checking
• Parity check: C = xyzP

– C = 1: an odd number of data bit error
C = 0: correct or an ever # of data bit error– C = 0: correct or an ever # of data bit error
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3.9 Hardware Description Language (HDL)

• Prototype integrated circuits are too expensive and time consuming to build, so 
all modern design tools rely on a hardware description language (HDL) to 
describe design and test a circuit in software before it is ever manufactureddescribe, design, and test a circuit in software before it is ever manufactured.

• Industry favored standards: VHDL and Verilog HDL
• A computer-based language that describes the hardware of digital systems in a p g g g y

textual form.
• As a documentation language, an HDL is used to represent and document digital 

systems in a form that can be read by both humans and computers and is suitablesystems in a form that can be read by both humans and computers and is suitable 
as an exchange language between designers.

• HDLs are used in several major steps in the design flow of an integrated circuit: 
design entry, functional simulation or verification, logic synthesis, timing 
verification, and fault simulation.
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• Design entry creates an HDL-based description of the functionality that is to be 
implemented in hardware.
L i i l ti di l th b h i f di it l t th h th f• Logic simulation displays the behavior of a digital system through the use of a 
computer.

• The stimulus (i.e., the logic values of the inputs to a circuit) that tests the ( , g p )
functionality of the design is called a test bench.

• Logic synthesis is the process of deriving a list of physical components and their 
interconnections (called a netlist) from the model of a digital system described ininterconnections (called a netlist) from the model of a digital system described in 
an HDL.

• Timing verification confirms that the fabricated, integrated circuit will operate at 
a specified speed.

• In VLSI circuit design, fault simulation compares the behavior of an ideal circuit 
with the behavior of a circuit that contains a process-induced flawwith the behavior of a circuit that contains a process-induced flaw.
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Example
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Homework #3

• 3.2 (c) (f)

• 3.6 (c) (d)

• 3.11

• 3 15 (c)• 3.15 (c)

• 3.16 (a) (c)( ) ( )

• 3.21
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