
Chapter 3: Gate-Level Minimization
3.1 Introduction

3.2 The Map Method3.2 The Map Method

3.3 Four­Variable K-Map

3 4 P d f S Si lifi i3.4 Product­of­Sums Simplification

3.5 Don’t­Care Conditions

3.6 NAND and NOR Implementation

3 7 Other Two­Level Implementations3.7 Other Two Level Implementations

3.8 Exclusive­OR Function

3.9 Hardware Description Language

NCNU_2013_DD_3_1

3.1 Introduction
• Gate-level minimization: a digital circuit design task of finding an optimal gate-

level implementation of the Boolean functions.
Thi t k i ll d t d b t i diffi lt t t b l d i th d• This task is well understood, but is difficult to execute by manual design methods
when the logic has more than a few inputs (typically five inputs).

• Fortunately, computer-based logic synthesis tools can minimize a large set of y, p g y g
Boolean equations efficiently and quickly.

• Nevertheless, it is important that a designer understands the underlying
mathematical description and solution of the problemmathematical description and solution of the problem.

• This chapter will enable you to execute a manual design of simple circuits,
preparing you for skilled use of modern design tools.

• Hardware description language (HDL), such as Verilog and VHDL, is used by
modern design tools.

NCNU_2013_DD_3_2

3.2 The Map Method
• When implementing a Boolean function: the complexity of the digital logic gates

is directly related to the complexity of its algebraic expression.
T th t bl t ti i i b t i l t l b i i• Truth table representation is unique, but many equivalent algebraic expressions
may exist.

• Karnaugh map (K-map): a simple and straightforward procedure for minimizing g p (p) p g p g
Boolean functions, which may be regarded as a pictorial form of a truth table.

• K-map is a diagram made up of squares, and each square represents one minterm.
l f i• Boolean function

– can be expressed as a sum of minterms
has simplified expression in sum of products (or product of sums)– has simplified expression in sum of products (or product of sums)

– exists the simplest algebraic expression with a minimum number of terms and
with the smallest possible number of literals in each term, which will produce
a circuit with a minimum number of gates and the minimum number of inputs
to each gate

– may not have unique simplified expression

NCNU_2013_DD_3_3

may not have unique simplified expression

Two-Variable Map
• Two-variable map has four squares for four minterms.

• Representation of functions in the map m1 + m2 + m3 = x’y + xy’ + xy = x + y

NCNU_2013_DD_3_4

Three-Variable map
• Three variables function has eight minterms.
• Arranged in Gray code sequence
• Any two adjacent squares in the map differ by only one variable

– primed in one square and unprimed in the other
e g and can be simplified– e.g. m5 and m7 can be simplified

– m5+ m7 = xy'z + xyz = xz (y'+y) = xz i.e. x = 1 and z = 1.

NCNU_2013_DD_3_5

Example 3.1
Simplify the Boolean function F(x,y,z) = (2,3,4,5)
F = m2+m3+m4+m5 = x’yz’ + x’yz + xy’z’ + xy’z = x’y + xy’

NCNU_2013_DD_3_6

– m0 and m2 (m4 and m6) are adjacent
– m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'
– m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'

NCNU_2013_DD_3_7

Example 3-2
Simplify the Boolean function F(x,y,z) = (3,4,6,7) = yz+ xz'
F = m3+m4+m6+m7 = x’yz + xy’z’ + xyz’ + xyz = xz’ + yz

NCNU_2013_DD_3_8

Four Adjacent Minterms
– Four adjacent minterms result in one literal expression.
– 2, 4, 8 and 16 squares are adjacent. (How many four adjacent squares? Ans: 6)
– m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz’ = x'z'(y'+y) +xz'(y'+y)

= x'z' + xz’ = z’
– m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz = x'z(y'+y) + xz(y'+y)m1+m3+m5+m7 x y z+x yz+xy z+xyz x z(y +y) + xz(y +y)

= x'z + xz = z

NCNU_2013_DD_3_9

Example 3-3
Simplify the Boolean function F(x,y,z) = (0,2,4,5,6)
F = z'+ xy'

NCNU_2013_DD_3_10

Example 3.4
For the Boolean function F = A'C + A'B + AB'C + BC
(a) Express this function as a sum of minterms. one-literal  4 squares

li l 2(b) Find the minimal sum-of-products expression. two-literal  2 squares
three-literal  1 square

F(A, B, C) = (1, 2, 3, 5, 7) = C + A’B

A’C m1+m3

A’B m2+m32 3

AB’C m5

BC m3+m7

m1+m3+ m5+m7 C
 A’Bm2+m3  A’B

NCNU_2013_DD_3_11

3-3 Four-Variable Map
• Four variables (w,x,y,z) function has 16 minterms and squares
• Combinations of 2, 4, 8, and 16 adjacent squares
• 1 square  4-literal, 2 squares  3-literal,

4 squares  2-literal, 8 squares  1-literal

NCNU_2013_DD_3_12

Example 3-5
Simplify the Boolean function F(w,x,y,z) = (0,1,2,4,5,6,8,9,12,13,14)
F = y’ + w’z’ + xz’

NCNU_2013_DD_3_13

Example 3-6
Simplify the Boolean function F = ABC + BCD + ABCD + ABC

m0+m1 m2+m10 m8+m9m6F = B’D’ + B’C’ + A’CD’

NCNU_2013_DD_3_14

Prime Implicants
• Choosing adjacent squares in K-map, we must ensure that

(1) all the minterms of the function are covered,
(2) the number of terms in the expression is minimized, and
(3) there are no redundant terms.
To de elop a s stematic proced re for combining sq ares in the map t o special• To develop a systematic procedure for combining squares in the map, two special
types of terms are interested.

• Prime implicant: a product term obtained by combining the maximum possible
number of adjacent squares in the map.

• If a minterm in a square is covered by only one prime implicant, that prime
implicant is said to be essentialimplicant is said to be essential.

• The prime implicants can be obtained by combining all possible maximum
numbers of squares.

NCNU_2013_DD_3_15

• Consider the following four-variable Boolean function:
F(A B C D) = (0 2 3 5 7 8 9 10 11 13 15)F(A, B, C, D) = (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

• There are four possible expressions with four product terms of two literals each:
F = BD + B’D’ + CD + AD

= BD + B’D’ + CD + AB’
= BD + B’D’ + B’C + AD
= BD + B’D’ + B’C + AB’ m3, m9, and m11 BD + B D + B C + AB 3, 9, 11

1

1 1

NCNU_2013_DD_3_16

Five-Variable Map
• Map for more than four variables becomes complicated

– five-variable map: two four-variable map (one on the top of the other)

NCNU_2013_DD_3_17

Example of 5-Variable Map
F = (0,2,4,6,9,13,21,23,25,29,31)

NCNU_2013_DD_3_18

Another Viewpoint of 5-Variable Map

NCNU_2013_DD_3_19

3-4 Product of Sums Simplification
• Approach #1

– Simplified F' in the form of sum of products
– Apply DeMorgan's theorem F = (F')'
– F': sum of products => F: product of sums
Approach #2: d alit• Approach #2: duality
– combinations of maxterms (it was minterms)
– M0M1 = (A+B+C+D)(A+B+C+D’) = (A+B+C)+(DD’) = A+B+CM0M1 (A+B+C+D)(A+B+C+D) (A+B+C)+(DD) A+B+C

 CD
AB 00 01 11 10 AB 00 01 11 10

 00 M0 M1 M3 M2
01 M4 M5 M7 M6 01 M4 M5 M7 M6

 11 M12 M13 M15 M14
 10 M8 M9 M11 M10

NCNU_2013_DD_3_20

Example 3-7
Simplify the Boolean function F = (0,1,2,5,8,9,10) into (a) sum-of-products form
and (b) product-of-sums form.

F' = AB+CD+BD' (adjacent squares 0 in the map)
Apply DeMorgan's theorem; F = (A'+B')(C'+D')(B'+D)

NCNU_2013_DD_3_21

Two-Level Implementation of Example 3-7
• Two-level gate implementation: sum of products, and product of sums

NCNU_2013_DD_3_22

Sum-of-Maxterm
• The 1’s of the function represent the minterms and the 0’s represent the maxterms.
• For Table 3.1

In sum-of-minterm: F(x, y, z) = (1, 3, 4, 6) = x’z + xz’

In sum-of-maxterm: F’(x, y, z) = (0, 2, 5, 7) = (x’+z’) (x+z)
Taking the complement of F F(x, y, z) = (x’+z’) (x+z) = x’z + xz’

NCNU_2013_DD_3_23

3-5 Don't-Care Conditions
• In practice, functions with unspecified outputs for some input combinations are

called incompletely specified functions. As an example, the BCD code has six
combinations that are not used and considered to be unspecifiedcombinations that are not used and considered to be unspecified.

• The unspecified minterms of a function is called don’t-care conditions, because
we simply don’t care what value is assumed to the unspecified minterms.

• These don’t-care conditions with symbol ‘X’ can be used on a map to provide
further simplification of the Boolean expression.

• In choosing adjacent squares to simplify the function the don’t care minterms• In choosing adjacent squares to simplify the function, the don t-care minterms
may be assumed to be either 0 or 1.

NCNU_2013_DD_3_24

Example 3.8
Simplify the Boolean function F(w, x, y, z) = (1, 3, 7, 11, 15) which has the don’t-
care conditions d(w, x, y, z) = (0, 2, 5).
With t i X F + ’ ’Without using X, F = yz + w’x’z
Using X, (a) F = yz + w’x’ (b) F = yz + w’z

NCNU_2013_DD_3_25

3-6 NAND and NOR Implementation
• NAND or NOR are preferred as the basic gates used in IC design.
• AND, OR, NOT, and other gates are translated to NAND and NOR gates.
• NAND gate is a universal gate, any function can be implemented with NAND.

• Two graphic symbols for a NAND gate

NCNU_2013_DD_3_26

Two-level Implementation: NAND-NAND
• The implementation of Boolean functions with NAND gates requires that the

functions be in sum-of-products form.
T l l l i NAND NAND f d t• Two-level logic: NAND-NAND  sum of products

• Example: F = AB + CD = ((AB)’(CD)’)’

NCNU_2013_DD_3_27

Example 3-9
• Implement the following Boolean function with NAND gates:

F(x, y, z) = (1, 2, 3, 4, 5, 7)
• Fill the map and simplify we get F = xy’ + x’y + zFill the map and simplify, we get F xy + x y + z

NCNU_2013_DD_3_28

Two-level Implementation Procedure
• The standard form of expressing Boolean functions results in a two-level

implementation.
1 Si lif th f ti d it i f d t f1. Simplify the function and express it in sum-of-products form.
2. Draw a NAND gate for each product term of the expression that has at least two

literals. The inputs to each NAND gate are the literals of the term. This procedure p g p
produces a group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the
second level with inputs coming from outputs of first level gatessecond level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level. However, if the
single literal is complemented, it can be connected directly to an input of the
second level NAND gate.

NCNU_2013_DD_3_29

Multilevel NAND Circuits
• Boolean function implementation of three or more levels (multi-level)
• Express the Boolean function in terms of AND, OR, and complement operations.

Th f ti th b i l t d ith AND d OR t Aft th t ifThe function can then be implemented with AND and OR gates. After that, if
necessary, it can be converted into an all-NAND circuit.

• Example: F = A (CD + B) + BC’p ()

NCNU_2013_DD_3_30

Multilevel AND-OR  All-NAND
1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2. Convert all OR gates to NAND gates with invert-OR graphic symbols.
3 Check all the bubbles in the diagram For every bubble that is not compensated3. Check all the bubbles in the diagram. For every bubble that is not compensated

by another small circle along the same line, insert an inverter (a one-input NAND
gate) or complement the input literal.

Example: F = (AB’ + A’ B)(C + D’)

NCNU_2013_DD_3_31

NOR Implementation
• NOR function is the dual of NAND function
• The NOR gate is also universal

• Two graphical symbols

NCNU_2013_DD_3_32

Two-level Implementation: NOR-NOR
• A two-level implementation with NOR gates requires that the function be

simplified into product-of-sums form.
A d t f i i i l t d ith OR AND i it• A product-of-sums expression is implemented with OR–AND circuit.

• NOR-NOR: changing the OR gates to NOR gates with OR-invert graphic
symbols and the AND gate to a NOR gate with an invert-AND graphic symbol. y g g g p y

• Example: F = (A + B)(C + D)E

NCNU_2013_DD_3_33

Transform AND-OR to All-NOR
• Convert each OR gate to an OR-invert symbol and each AND gate to an invert-

AND symbol.
E l F (AB’ + A’ B)(C + D’)• Example: F = (AB’ + A’ B)(C + D’)

NCNU_2013_DD_3_34

3-7 Other Two-level Implementations
• Wired-AND: when two open-collector TTL NAND gates ties together, AND

function, not a physical gate, is formed.
F (AB)’ (CD)’ (AB + CD)’ (A’ + B’)(C’ + D’)• F = (AB)’ (CD)’ = (AB + CD)’ = (A’ + B’)(C’ + D’)

• Also called an AND–OR–INVERT (AOI) function.

• Similarly, the NOR outputs of ECL gates can be tied together to perform a wired-
OR function.

• F = (A+B)’+(C+D)’ = [(A+B)(C+D)]’
Also called an OR AND INVERT (OAI) f nction

NCNU_2013_DD_3_35

• Also called an OR–AND–INVERT (OAI) function.

Nondegenerate Forms
• There are 16 possible combinations of two-level forms

– Eight of them are degenerate forms = a single operation
– The eight nondegenerate forms are
AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND,

OR-AND AND-OROR AND, AND OR
AND-OR and NAND-NAND = sum of products
OR-AND and NOR-NOR = product of sums
NOR-OR, NAND-AND, OR-AND, AND-OR = ?

NCNU_2013_DD_3_36

AND-OR-Invert Implementation
• NAND-AND = AND-NOR = AOI
• Example: F = (AB + CD + E)’

NCNU_2013_DD_3_37

OR-AND-INVERT (OAI) Implementation
• OR-NAND = NOR-OR = OAI
• Example: F = ((A + B)(C + D)E)'

NCNU_2013_DD_3_38

Tabular Summary

NCNU_2013_DD_3_39

Example 3-10
Implement the function of Fig. (a) with the four 2-level forms listed in Table 3.2 .

• F’ = x’y + xy’ + z (F’: sum of products; 0’s)

• F = (x’y + xy’ + z)’ (F: AOI implementation)• F = (x y + xy + z) (F: AOI implementation)

• F = x’y’z’ + xyz’ (F: sum of products; 1’s)y y (p ;)

• F’ = (x + y + z)(x’ + y’ + z) (F’: product of sums)

• F = ((x + y + z)(x’ + y’ + z))’ (F: OAI)

NCNU_2013_DD_3_40

F ((x + y + z)(x + y + z)) (F: OAI)

Other Two-level Implementations

NCNU_2013_DD_3_41

3-8 Exclusive-OR Function
• Exclusive-OR (XOR)

– xy = xy’ + x’y
• Exclusive-NOR (XNOR) (some uses symbol ʘ)

– (xy)’ = xy + x’y’
Some identities• Some identities
– x0 = x
– x1 = x’x1 x
– xx = 0
– xx’ = 1
– xy’ = (xy)’
– x'y = (xy)’

• Commutative and associative
– AB = BA

(AB)C A(BC) ABC

NCNU_2013_DD_3_42

– (AB)C = A(BC) = ABC

XOR Implementation
• (x’ + y’)x + (x’ + y’)y = xy’ + x’y = xy

NCNU_2013_DD_3_43

Odd Function
ABC (AB’ + A’B)C’ + (AB + A’B’)C AB’C’ + A’BC’ + ABC + A’B’C• ABC = (AB’ + A’B)C’ + (AB + A’B’)C = AB’C’ + A’BC’ + ABC + A’B’C

= (1,2,4,7)
• Odd number of 1'sOdd number of 1 s
• The complement is a even function.

NCNU_2013_DD_3_44

Four-variable Exclusive-OR
• ABCD = (AB’ + A’B)(CD’ + C’D)

= (AB’ + A’B)(CD + C’D’) + (AB + A’B’)(CD’ + C’D)
= (1, 2, 4, 7, 8, 11, 13, 14)

NCNU_2013_DD_3_45

Parity Generation
• XOR is used in error detection and correction codes; a parity bit is an extra bit

included with a binary message to make the number of 1’s either odd or even.
P it bit P   i d f d t ti• Parity bit: P = xyz, is used for error detection

NCNU_2013_DD_3_46

Parity Checking
• Parity check: C = xyzP

– C = 1: an odd number of data bit error
C = 0: correct or an ever # of data bit error– C = 0: correct or an ever # of data bit error

NCNU_2013_DD_3_47

3.9 Hardware Description Language (HDL)

• Prototype integrated circuits are too expensive and time consuming to build, so
all modern design tools rely on a hardware description language (HDL) to
describe design and test a circuit in software before it is ever manufactureddescribe, design, and test a circuit in software before it is ever manufactured.

• Industry favored standards: VHDL and Verilog HDL
• A computer-based language that describes the hardware of digital systems in a p g g g y

textual form.
• As a documentation language, an HDL is used to represent and document digital

systems in a form that can be read by both humans and computers and is suitablesystems in a form that can be read by both humans and computers and is suitable
as an exchange language between designers.

• HDLs are used in several major steps in the design flow of an integrated circuit:
design entry, functional simulation or verification, logic synthesis, timing
verification, and fault simulation.

NCNU_2013_DD_3_48

• Design entry creates an HDL-based description of the functionality that is to be
implemented in hardware.
L i i l ti di l th b h i f di it l t th h th f• Logic simulation displays the behavior of a digital system through the use of a
computer.

• The stimulus (i.e., the logic values of the inputs to a circuit) that tests the (, g p)
functionality of the design is called a test bench.

• Logic synthesis is the process of deriving a list of physical components and their
interconnections (called a netlist) from the model of a digital system described ininterconnections (called a netlist) from the model of a digital system described in
an HDL.

• Timing verification confirms that the fabricated, integrated circuit will operate at
a specified speed.

• In VLSI circuit design, fault simulation compares the behavior of an ideal circuit
with the behavior of a circuit that contains a process-induced flawwith the behavior of a circuit that contains a process-induced flaw.

NCNU_2013_DD_3_49

Example

NCNU_2013_DD_3_50

NCNU_2013_DD_3_51

Homework #3

• 3.2 (c) (f)

• 3.6 (c) (d)

• 3.11

• 3 15 (c)• 3.15 (c)

• 3.16 (a) (c)() ()

• 3.21

NCNU_2013_DD_3_52

